Personalized Transfer of User Preferences for Cross-domain Recommendation

Advisor : Jia-Ling, Koh

Speaker: Shu-Ming Yu

Source : WSDM' 22

Date: 2023/07/12

Outline

Introduction

- Method
- Experiment
- Conclusion

Introduction

Common bridge methods assume that all users share the same user

Introduction

• Past CDR methods share the common bridge function, this paper use personalized bridge function.

Meta Learning

Meta Network

Input: • user $\mathcal{U} = \{u_1, u_2, ...\}$ - $\mathcal{U}^s, \mathcal{U}^t, \mathcal{U}^o$ $(\mathcal{U}^o = \mathcal{U}^s \cap \mathcal{U}^t)$ • item $\mathcal{V} = \{v_1, v_2, ...\}$ - $\mathcal{V}^s, \mathcal{V}^t$ • user's sequential interaction $S_{u_i} = \{v_{t_1}^s, v_{t_2}^s, \cdots, v_{t_n}^s\}$

Output:

• rating $r_{ij} \in \mathcal{R}$, from user u_i and item v_j - \mathcal{R}^s , \mathcal{R}^t

Outline

Introduction

Method

- Characteristic Encoder
- Personalized Bridge
- Experiment
- Conclusion

Method

Characteristic Encoder

Transferable characteristic embedding of user

$$\boldsymbol{p}_{u_i} = \sum_{\boldsymbol{v}_j^s \in \mathcal{S}_{u_i}} a_j \boldsymbol{v}_j^s,$$

input:
$$S_{u_i} = \{v_{t_1}^s, v_{t_2}^s, \cdots, v_{t_n}^s\}$$

Attention network

$$a'_{j} = h(v_{j}; \theta),$$

$$a_{j} = \frac{\exp(a'_{j})}{\sum_{v_{l}^{s} \in S_{u_{i}}} \exp(a'_{l})},$$

Interacted items in
source domain
$$\vdots$$

 \vdots
 $\bigcirc \cdots \bigcirc \bigcirc$
 \vdots
 $\bigcirc \cdots \bigcirc \bigcirc$
 \vdots
 $\bigcirc \cdots \bigcirc \bigcirc$
 $h(\cdot; \theta)$

Personalized Bridge

$$\boldsymbol{w}_{u_i} = g(\boldsymbol{p}_{u_i}; \phi)$$
$$\hat{\boldsymbol{u}}_i^t = f_{u_i}(\boldsymbol{u}_i^s; \boldsymbol{w}_{u_i})$$

$$\mathcal{L} = \min_{\theta,\phi} \frac{1}{|\mathcal{R}_o^t|} \sum_{r_{ij} \in \mathcal{R}_o^t} (r_{ij} - f_{u_i}(\boldsymbol{u}_i^s; \boldsymbol{w}_{u_i}) \boldsymbol{v}_j)^2$$

Outline

- Introduction
- Method
- Experiment
- Conclusion

Dataset

- Task1 : Movie -> Music
- Task2 : Book -> Movie
- Task3 : Book -> Music

	Domain		Item		User			Rating	
CDR Tasks	Source	Target	Source	Target	Overlap	Source	Target	Source	Target
Task1	Movie	Music	50,052	64,443	18,031	123,960	75,258	1,697,533	1,097,592
Task2	Book	Movie	367,982	50,052	37,388	603,668	123,960	8,898,041	1,697,533
Task3	Book	Music	367,982	64,443	16,738	603,668	75,258	8,898,041	1,097,592

Evaluation

- Root Mean Squared Error(RMSE)
- Mean Absolute Error(MAE)

$$RMSE = \sqrt{rac{1}{n}\sum_{i=1}^n (\hat{y}_i - y_i)^2}$$

$$MAE = rac{1}{n}\sum_{i=1}^n |\hat{y}_i - y_i|$$

Baselines

- TGT : Target MF model.
- CMF : Users' embedding are shared across the source and target domains.
- EMCDR : Transfer users' embedding from source to target.
- DCDCSR : Bridge-based methods. Considering the rating sparsity degrees.
- SSCDR : Semi-supervised bridge-based method.

eta : the proportion of test user of overlapping users

Experiment

	$\mid \beta \mid$	Metric	TGT	CMF	DCDCSR	SSCDR	EMCDR	PTUPCDR Improve
Task1	20%	MAE RMSE	4.4803 5.1580	1.5209 2.0158	1.4918 1.9210	1.3017 1.6579	1.2350 1.5515	1.1504* 6.86% 1.5195 2.06%
	50%	MAE RMSE	4.4989 5.1736	1.6893 2.2271	1.8144 2.3439	1.3762 1.7477	1.3277 1.6644	1.2804* 3.57% 1.6380 1.59%
	80%	MAE RMSE	4.5020 5.1891	2.4186 3.0936	2.7194 3.3065	1.5046 1.9229	1.5008 1.8771	1.4049* 6.39% 1.8234* 2.86%
	20%	MAE RMSE	4.1831 4.7536	1.3632 1.7918	1.3971 1.7346	1.2390 1.6526	1.1162 1.4120	0.9970* 10.68% 1.3317* 5.69%
Task2	50%	MAE RMSE	4.2288 4.7920	1.5813 2.0886	1.6731 2.0551	1.2137 1.5602	1.1832 1.4981	1.0894* 7.93% 1.4395* 3.91%
	80%	MAE RMSE	4.2123 4.8149	2.1577 2.6777	2.3618 2.7702	1.3172 1.7024	1.3156 1.6433	1.1999* 8.80% 1.5916* 3.15%
	20%	MAE RMSE	4.4873 5.1672	1.8284 2.3829	1.8411 2.2955	1.5414 1.9283	1.3524 1.6737	1.2286* 9.15% 1.6085* 3.90%
Task3	50%	MAE RMSE	4.5073 5.1727	2.1282 2.7275	2.1736 2.6771	1.4739 1.8441	1.4723 1.8000	1.3764* 6.51% 1.7447* 3.07%
	80%	MAE RMSE	4.5204 5.2308	3.0130 3.6948	3.1405 3.5842	1.6414 2.1403	1.7191 2.1119	1.5784* 3.84% 2.0510* 2.88%

Mean results over five random round

• Non-neural based model v.s. Neural based model

Non-neural

Neural

• Warm-start v.s. Cold-start

Conclusion

- A single bridge function is hard to capture various relationships between user preferences in source and target.
- In cold-start problems, using personalized bridge functions could lead to better results.